
Q.1	What is System? Explain with an example		
	A system is an arrangement in which all its unit assemble work together according to a set of rules. It can also be defined as a way of working, organizing or doing one or many tasks according to a fixed plan. For example, a watch is a time displaying system. Its components follow a set of rules to show time. If one of its parts fails, the watch will stop working. So we can say, in a system, all its subcomponents depend on each other.		
Q.2	Define Embedded System.		
	As its name suggests, Embedded means something that is attached to another thing. An embedded system can be thought of as a computer hardware system having software embedded in it. An embedded system can be an independent system or it can be a part of a large system. An embedded system is a microcontroller or microprocessor based system which is designed to perform a specific task. For example, a fire alarm is an embedded system; it will sense only smoke.		
Q.3	Explain 3 components of Embedded System.		
	 An embedded system has three components – It has hardware. It has application software. It has Real Time Operating system (RTOS) that supervises the application software and provide mechanism to let the processor run a process as per scheduling by following a plan to control the latencies. RTOS defines the way the system works. It sets the rules during the execution of application program. A small scale embedded system may not have RTOS. 		
Q.4	Basic Structure of an Embedded System		
	Sensor A-D Converter Processor & D-A Converter Actuator ASIC Converter Actuator Memory The following illustration shows the basic structure of an embedded system –		
	• Sensor – It measures the physical quantity and converts it to an electrical signal which can		
	be read by an observer or by any electronic instrument like an A2D converter. A sensor		
	stores the measured quantity to the memory.		

	• A-D Converter – An analog-to-digital converter converts the analog signal sent by the sensor into a digital signal.				
	• Processor & ASICs – Processors process the data to measure the output and store it to the memory.				
	• D-A Converter – A digital-to-analog converter converts the digital data fed by th processor to analog data				
	• Actuator – An actuator compares the output given by the D-A Converter to the actual (expected) output stored in it and stores the approved output.				
Q.5	Four General Embedded System Types				
	 General Computing 				
	 Applications similar to desktop computing, but in an embedded package 				
	 Video games, set-top boxes, wearable computers, automatic tellers 				
	 Control Systems 				
	 Closed-loop feedback control of real-time system 				
	 Vehicle engines, chemical processes, nuclear power, flight control 				
	 Signal Processing 				
	 Computations involving large data streams 				
	 Radar, Sonar, video compression 				
	 Communication & Networking 				
	 Switching and information transmission 				
	 Telephone system, Internet 				
Q.6	Processor and its' units				
	Processor is the heart of an embedded system. It is the basic unit that takes inputs and produces				
	an output after processing the data. For an embedded system designer, it is necessary to have the				
	knowledge of both microprocessors and microcontrollers.				
	Processors in a System				

	A processor has two essential units –				
	Program Flow Control Unit (CU)				
	• Execution Unit (EU)				
	The CU includes a fetch unit for fetching instructions from the memory. The EU has circuits the implement the instructions pertaining to data transfer operation and data conversion from o form to another.				
	The EU includes the Arithmetic and Logical Unit (ALU) and also the circuits that execu instructions for a program control task such as interrupt, or jump to another set of instructions.				
	A processor runs the cycles of fetch and executes the instructions in the same sequence as they are fetched from memory.				
Q.7	Types of Processors				
	Processors can be of the following categories –				
	General Purpose Processor (GPP)				
	 Microprocessor 				
	• Microcontroller				
	• Embedded Processor				
	 Digital Signal Processor 				
	 Media Processor 				
	Application Specific System Processor (ASSP)				
	Application Specific Instruction Processors (ASIPs)				
	• GPP core(s) or ASIP core(s) on either an Application Specific Integrated Circuit (ASIC) or a Very Large Scale Integration (VLSI) circuit.				
Q.8	Microprocessor				
	A microprocessor is a single VLSI chip having a CPU. In addition, it may also have other units such as coaches, floating point processing arithmetic unit, and pipelining units that help in faster processing of instructions.				

	Earlier generation microprocessors' fetch-and-execute cycle was guided by a clock frequency of order of \sim 1 MHz. Processors now operate at a clock frequency of 2GHz						
	CPU General- Purpose Micro- processor			I/O Port	Timer	Serial COM Port	
Q.9	Microcor	ontroller					
	A microcontroller is a single-chip VLSI unit (also called microcomputer) which, although having limited computational capabilities, possesses enhanced input/output capability and a number of on-chip functional units.						
	CPU RAM ROM						
	I/O Port	Timer	Serial COM P	ort			
		llers are particularly used in embedded systems for real-time ications with on-chip program memory and devices.					
Q.10	Microprocessor vs Microcontroller						
	Microprocessor		Microcontroller				
	Microprocessors are multitasking in nature. Can perform multiple tasks at a time. For example, on computer we can play music while writing text in text editor.			oriented. For ex achine is designe thes only.			

	RAM, ROM, I/O Ports, and Timers can be added externally and can vary in numbers.	RAM, ROM, I/O Ports, and Timers cannot be added externally. These components are to be embedded together on a chip and are fixed in numbers.			
	Designers can decide the number of memory or I/O ports needed.	Fixed number for memory or I/O makes a microcontroller ideal for a limited but specific task.			
	External support of external memory and I/O ports makes a microprocessor-based system heavier and costlier.	Microcontrollers are lightweight and cheaper than a microprocessor.			
	External devices require more space and their power consumption is higher.	A microcontroller-based system consumes less power and takes less space.			
Q.11	Harvard architecture.				
	The Harvard architecture offers separate storage and signal buses for instructions and data. This architecture has data storage entirely contained within the CPU, and there is no access to the instruction storage as data. Computers have separate memory areas for program instructions and data using internal data buses, allowing simultaneous access to both instructions and data. Programs needed to be loaded by an operator; the processor could not boot itself. In a Harvard architecture, there is no need to make the two memories				
	itself. In a Harvard architecture, there is no need to make the two memories share properties.				

	Harvard Architecture.					
	Von-Neumann Architecture	Harvard Architecture				
	Single memory to be shared by both code and data.	Separate memories for code and data.				
	Processor needs to fetch code in a separate clock cycle and data in another clock cycle. So it requires two clock cycles.	Single clock cycle is sufficient, as separate buses are used to access code and data.				
	Higher speed, thus less time consuming.	Slower in speed, thus more time- consuming.				
	Simple in design.	Complex in design.				
Q.14	CISC and RISC					
	CISC is a Complex Instruction Set Computer. It is a computer that can address a large number of instructions. In the early 1980s, computer designers recommended that computers shoul use fewer instructions with simple constructs so that they can be executed much faster within the CPU without having to use memory. Such computer are classified as Reduced Instruction Set Computer or RISC.					
Q.15	CISC vs RISC					
	The following points differentiate a CISC from a RISC –					
	CISC	RISC				

	Simpler design of compiler, considering larger set of instructions.	Complex design of compiler.
	Many addressing modes causing complex instruction formats.	Few addressing modes, fix instruction format.
	Instruction length is variable.	Instruction length varies.
	Higher clock cycles per second.	Low clock cycle per second.
	Emphasis is on hardware.	Emphasis is on software.
	Control unit implements large instruction set using micro-program unit.	Each instruction is to be executed by hardware.
	Slower execution, as instructions are to be read from memory and decoded by the decoder unit.	Faster execution, as each instruction is to be executed by hardware.
	Pipelining is not possible.	Pipelining of instructions is possible, considering single clock cycle.