
Q.1 What is System? Explain with an example

 A system is an arrangement in which all its unit assemble work together according to a set of

rules. It can also be defined as a way of working, organizing or doing one or many tasks

according to a fixed plan. For example, a watch is a time displaying system. Its components

follow a set of rules to show time. If one of its parts fails, the watch will stop working. So we can

say, in a system, all its subcomponents depend on each other.

Q.2 Define Embedded System.

 As its name suggests, Embedded means something that is attached to another thing. An

embedded system can be thought of as a computer hardware system having software embedded

in it. An embedded system can be an independent system or it can be a part of a large system. An

embedded system is a microcontroller or microprocessor based system which is designed to

perform a specific task. For example, a fire alarm is an embedded system; it will sense only

smoke.

Q.3 Explain 3 components of Embedded System.

 An embedded system has three components −

• It has hardware.

• It has application software.

• It has Real Time Operating system (RTOS) that supervises the application software and

provide mechanism to let the processor run a process as per scheduling by following a

plan to control the latencies. RTOS defines the way the system works. It sets the rules

during the execution of application program. A small scale embedded system may not

have RTOS.

Q.4
Basic Structure of an Embedded System

The following illustration shows the basic structure of an embedded system –

• Sensor − It measures the physical quantity and converts it to an electrical signal which can

be read by an observer or by any electronic instrument like an A2D converter. A sensor

stores the measured quantity to the memory.

• A-D Converter − An analog-to-digital converter converts the analog signal sent by the

sensor into a digital signal.

• Processor & ASICs − Processors process the data to measure the output and store it to the

memory.

• D-A Converter − A digital-to-analog converter converts the digital data fed by the

processor to analog data

• Actuator − An actuator compares the output given by the D-A Converter to the actual

(expected) output stored in it and stores the approved output.

Q.5

Q.6
Processor and its’ units

 Processor is the heart of an embedded system. It is the basic unit that takes inputs and produces

an output after processing the data. For an embedded system designer, it is necessary to have the

knowledge of both microprocessors and microcontrollers.

Processors in a System

A processor has two essential units −

• Program Flow Control Unit (CU)

• Execution Unit (EU)

The CU includes a fetch unit for fetching instructions from the memory. The EU has circuits that

implement the instructions pertaining to data transfer operation and data conversion from one

form to another.

The EU includes the Arithmetic and Logical Unit (ALU) and also the circuits that execute

instructions for a program control task such as interrupt, or jump to another set of instructions.

A processor runs the cycles of fetch and executes the instructions in the same sequence as they

are fetched from memory.

Q.7 Types of Processors

 Processors can be of the following categories −

• General Purpose Processor (GPP)

o Microprocessor

o Microcontroller

o Embedded Processor

o Digital Signal Processor

o Media Processor

• Application Specific System Processor (ASSP)

• Application Specific Instruction Processors (ASIPs)

• GPP core(s) or ASIP core(s) on either an Application Specific Integrated Circuit

(ASIC) or a Very Large Scale Integration (VLSI) circuit.

Q.8
Microprocessor

 A microprocessor is a single VLSI chip having a CPU. In addition, it may also

have other units such as coaches, floating point processing arithmetic unit,

and pipelining units that help in faster processing of instructions.

Earlier generation microprocessors’ fetch-and-execute cycle was guided by a

clock frequency of order of ~1 MHz. Processors now operate at a clock

frequency of 2GHz

Q.9
Microcontroller

 A microcontroller is a single-chip VLSI unit (also called microcomputer)

which, although having limited computational capabilities, possesses

enhanced input/output capability and a number of on-chip functional units.

CPU RAM ROM

I/O Port Timer Serial COM Port

Microcontrollers are particularly used in embedded systems for real-time

control applications with on-chip program memory and devices.

Q.10
Microprocessor vs Microcontroller

Microprocessor Microcontroller

Microprocessors are multitasking in
nature. Can perform multiple tasks at a

time. For example, on computer we can
play music while writing text in text
editor.

Single task oriented. For example, a
washing machine is designed for

washing clothes only.

RAM, ROM, I/O Ports, and Timers can be

added externally and can vary in
numbers.

RAM, ROM, I/O Ports, and Timers

cannot be added externally. These
components are to be embedded
together on a chip and are fixed in

numbers.

Designers can decide the number of

memory or I/O ports needed.

Fixed number for memory or I/O

makes a microcontroller ideal for a
limited but specific task.

External support of external memory and
I/O ports makes a microprocessor-based
system heavier and costlier.

Microcontrollers are lightweight and
cheaper than a microprocessor.

External devices require more space and
their power consumption is higher.

A microcontroller-based system
consumes less power and takes less

space.

Q.11 Harvard architecture.

 The Harvard architecture offers separate storage and signal buses for

instructions and data. This architecture has data storage entirely contained

within the CPU, and there is no access to the instruction storage as data.

Computers have separate memory areas for program instructions and data

using internal data buses, allowing simultaneous access to both instructions

and data.

Programs needed to be loaded by an operator; the processor could not boot

itself. In a Harvard architecture, there is no need to make the two memories

share properties.

Q.12 Von Neumann architecture

 The Von Neumann architecture was first proposed by a computer scientist

John von Neumann. In this architecture, one data path or bus exists for both

instruction and data. As a result, the CPU does one operation at a time. It

either fetches an instruction from memory, or performs read/write operation

on data. So an instruction fetch and a data operation cannot occur

simultaneously, sharing a common bus.

Von-Neumann architecture supports simple hardware. It allows the use of a

single, sequential memory. Today's processing speeds vastly outpace

memory access times, and we employ a very fast but small amount of

memory (cache) local to the processor.

Q.13
Von-Neumann Architecture vs Harvard

Architecture

The following points distinguish the Von Neumann Architecture from the

Harvard Architecture.

Von-Neumann Architecture Harvard Architecture

Single memory to be shared by both code
and data.

Separate memories for code and
data.

Processor needs to fetch code in a separate
clock cycle and data in another clock cycle.

So it requires two clock cycles.

Single clock cycle is sufficient, as
separate buses are used to access

code and data.

Higher speed, thus less time consuming. Slower in speed, thus more time-

consuming.

Simple in design. Complex in design.

Q.14
CISC and RISC
CISC is a Complex Instruction Set Computer. It is a computer that can

address a large number of instructions.

In the early 1980s, computer designers recommended that computers should

use fewer instructions with simple constructs so that they can be executed

much faster within the CPU without having to use memory. Such computers

are classified as Reduced Instruction Set Computer or RISC.

Q.15 CISC vs RISC

The following points differentiate a CISC from a RISC −

CISC RISC

Larger set of instructions. Easy to

program

Smaller set of Instructions. Difficult to

program.

Simpler design of compiler, considering

larger set of instructions.

Complex design of compiler.

Many addressing modes causing

complex instruction formats.

Few addressing modes, fix instruction

format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large

instruction set using micro-program

unit.

Each instruction is to be executed by

hardware.

Slower execution, as instructions are to

be read from memory and decoded by

the decoder unit.

Faster execution, as each instruction is

to be executed by hardware.

Pipelining is not possible. Pipelining of instructions is possible,

considering single clock cycle.

